Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589671

RESUMO

Reduced insulin/IGF-1 signalling (rIIS) improves survival across diverse taxa and there is a growing interest in its role in regulating immune function. Whilst rIIS can improve anti-bacterial resistance, the consequences for anti-viral immunity are yet to be systematically examined. Here, we show that rIIS in adult Caenorhabditis elegans increases the expression of key genes in two different anti-viral immunity pathways, whilst reducing viral load in old age, increasing survival and reducing rate-of-senescence under infection by naturally occurring positive-sense single-stranded RNA Orsay virus. We found that both drh-1 in the anti-viral RNA interference (RNAi) pathway and cde-1 in the terminal uridylation-based degradation of viral RNA pathway were upregulated in early adulthood under rIIS and increased anti-viral resistance was not associated with reproductive costs. Remarkably, rIIS increased anti-viral gene expression only in infected worms, potentially to curb the costs of constitutively upregulated immunity. RNA viruses are found across taxa from plants to mammals and we demonstrate a novel role for rIIS in regulating resistance to viral infection. We therefore highlight this evolutionarily conserved signalling pathway as a promising therapeutic target to improve anti-viral immunity.

2.
Microbiology (Reading) ; 152(Pt 8): 2365-2379, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16849801

RESUMO

The toxin-antitoxin operon of pSM19035 encodes three proteins: the omega global regulator, the epsilon labile antitoxin and the stable zeta toxin. Accumulation of zeta toxin free of epsilon antitoxin induced loss of cell proliferation in both Bacillus subtilis and Escherichia coli cells. Induction of a zeta variant (zetaY83C) triggered stasis, in which B. subtilis cells were viable but unable to proliferate, without selectively affecting protein translation. In E. coli cells, accumulation of free zeta toxin induced stasis, but this was fully reversed by expression of the epsilon antitoxin within a defined time window. The time window for reversion of zeta toxicity by expression of epsilon antitoxin was dependent on the initial cellular level of zeta. After 240 min of constitutive expression, or inducible expression of high levels of zeta toxin for 30 min, expression of epsilon failed to reverse the toxic effect exerted by zeta in cells growing in minimal medium. Under the latter conditions, zeta inhibited replication, transcription and translation and finally induced death in a fraction (approximately 50 %) of the cell population. These results support the view that zeta interacts with its specific target and reversibly inhibits cell proliferation, but accumulation of zeta might lead to cell death due to pleiotropic effects.


Assuntos
Apoptose , Bacillus subtilis/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Plasmídeos/genética , Antitoxinas/fisiologia , Bacillus subtilis/fisiologia , Membrana Celular/metabolismo , Proliferação de Células , DNA Bacteriano/biossíntese , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Óperon , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...